

2. 신기술 개발 동기

- (1) 착안 사항
- ① 송전선로 대용량화로 철탑기초 규모 대형화
- ② 기초 각입공사는 상부 구조물 품질과 밀접한 연관 관계
- ③ 기존 재래식 각입측량 방법의 문제점을 탈피하여 시공 품질 확보
- ④ 정밀한 측량으로 각입오차 발생 방지
- (2) 기대 효과
- ① 측량 오차 최소화로 기초 각입공사 신뢰성 및 고품질 확보
- ② 작업의 간편화로 작업 효율성 극대화
- ③ 위험요인 사전 제거로 안전사고 예방
- ④ 인원 및 장비 투입 감소로 원가절감

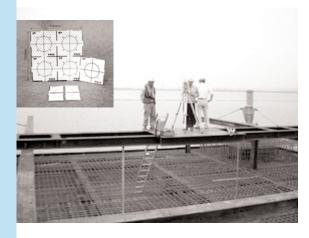

2. 기존 기술과의 비교

	기급되니 이프	
구 분	신기술	기존 기술
원리 및 특 징	· 송전선로 철탑기초재 각입시 광 파기와 반사시트 타켓을 이용한 각입 측량 공법	· 재래식 측량장비 및 공기구등을 이용한 각입 측량 : 반사미러(프리즘), 스태프, 실, 내 림추, 스틸 줄지등
장 점	· 측량오차 최소화로 품질향상 · 작업시간 단축을 통한 공기단축 · 위험요소 사전제거로 안전사고 예방 · 인원 및 장비의 투입 절감으로 원 가절감	
단 점		· 고소작업에 따른 안전사고 위험 내재 · 측량 보조자의 관측지점착오 및 외부적 환경 요인 등으로 각입 측 량 오차 발생

3. 기존 기술의 문제점 및 개선 방안

(1) 각입 측량 공법

① 기존 기술



② 기존 방법

광파기와 반사미러(프리즘)소자와 스틸줄자를 이용한 재래식 각

- 입 측량 방법
- ③ 문제점
- 각입 측량오차 발생
- 작업원의 안전사고 우려
- 작업 효율성 및 품질 저하

④ 신기술

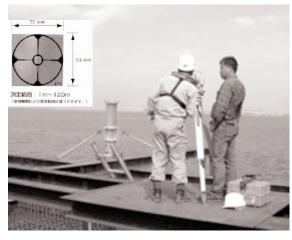
④ 개선 방법

광파기와 반사시트 타켓을 이용한 각입 측량 방법

- ⑤ 기대 효과
- 각입 측량 오차 최소화
- 작업 간편화로 효율성 극대화
- 작업원의 안전성 확보

(2) 기초재 기울기 측량 방법

① 기존기술



②기존 방법

내림추를 이용한 기초재 기울기 측량 방법

- ③ 문제점
- 바람의 영향에 의해 측량오차 발생
- 작업 효율성 및 품질 저하
- 부재의 간섭 및 측정자 식별 능력 차이로 인한 측량오차 발생

④ 신기술

④ 개선 방법

광파기와 반사시트 타켓을 이용한 각입 측량 방법

- ⑤ 기대 효과
- 각입 측량 오차 최소화
- 작업 간편화로 효율성 극대화
- 작업원의 안전성 확보

4. 현장 적용성

(1) 기술 활용 증명서

명 정	공파기와 반사시트 다켓을 이용한 권탑기요 작업 속광공범						
공 사 명	345kV 영흥T/L 건설공사(제2공구)						
발주기관	한국전력봉사						
시 공 자	회 사 명 방송건설주식회사			데표자	대표이사	김석준	
	영업소재지 서울시송파구신천동7-23			전화번호 02-3433-7114			
공 사 기 간	1998. 07. 03 ~ 2004. 04. 01						
	공동도급이행	용시	시공비율-명	용건성(주)	47%, 산성성	산(주)53%	
			공사				H 22
도급급역	송 도급급			8.227.400			각임공/
(단위:원.VAT포함)			6.066.878				
	삼성등산주식			2,160,522			
	구 간	구 간 345kV 영흥T/L 건설공사 No.30 ~ No.86,No.131 ~ No.15					
	지지물수	4	[종,공기	도체수		회선길이	
환 용 실 격	527	HTA	CSR480mf	455.1	2# ½ ×2Route×14.234km		n
0 0 0 4			TACSR480m/ 45대 4회전×1Route				
	3071 - 8 8271	TA	CSR480mr	45.4		oute×7.903km : 상기 심적	
환용 기술 내용	307	원선도	기호공사 기	호계 작업/	당사지본	: 삼기 심적	의 47%
	30기 총 82기 345kV 영흥성	원선도	기호공사 기	호계 작업/	당사지본	: 삼기 심적	의 47%
	30기 총 82기 345kV 영흥송 작용하여 작업	전선도 수당에	기호공사 기 활용한 사실	호계 작업/ 이 있음.	당사지분	: 장기 실적 반사 시트 타	SI 47%
원용 기술 내용	30기 총 82기 345kV 영흥송 지용하여 작업 광과기와 만사	원선로 숙당에 시트 :	기초공사 기 활용한 사실 타켓을 이용(조제 각임/ 이 있음. 한 설립 기3	당사지분	: 장기 실적 반사 시트 타	의 47%
활용 기술 내용 활용 기술 범위	30기 총 82기 345kV 영흥송 지용하여 작업 광과기와 만사	원선로 숙당에 시트 :	기초공사 기 활용한 사실 타켓을 이용(조제 각임/ 이 있음. 한 설립 기3	당사지본 시 광파기와 논제 작업 즉	: 장기 실적 반사 시트 타	SI 47%
활용 기술 내용 활용 기술 범위	30기 총 82기 345kV 영흥송 지용하여 작업 광과기와 만사	원선로 숙당에 시트 :	기초공사 기 활용한 사실 타켓을 이용(하여 주시기	호계 작업/ 이 있음. 한 설립 기의 마합니다.	당사지본 시 광파기와 논제 작업 즉	: 장기 실적 반사 시트 티 발공범 07 원 일	SI 47%
활용 기술 내용 활용 기술 범위	30기 총 82기 345kV 영흥송 지용하여 작업 광과기와 만사	원선로 숙당에 시트 :	기초공사 기 활용한 사실 타켓을 이용(하여 주시기 주 소	조제 작업/ 이 있음. 는 설탑 기의 바랍니다.	당사지분 미 광파기와 논제 각일 즉 2004년	: 장기 실적 반사 시트 티 당공범 07 원 일 7-23	의 47%
활용 기술 내용 활용 기술 범위	30기 총 82기 345kV 영흥송 지용하여 작업 광과기와 만사	원선로 숙당에 시트 :	기초문사 기 활용한 사업 타켓을 이용(하여 주시기 주 소 회 사 명	조제 작업/ 이 있음. 는 설탑 기의 바랍니다.	당사지문 나 광파기와 소재 각임 즉 2004년 나구 신천동 나 주 석 회	: 장기 심적 반사 시트 티 당공별 07 원 일 7-23 사 라크로	의 47%

4. 신기술 내용 및 범위

(1) 신기술 내용

본 신기술은 송전선로 철탑 기초재 각입공사시 광파기와 반사시 트 타켓을 이용한 각입 측량 공법

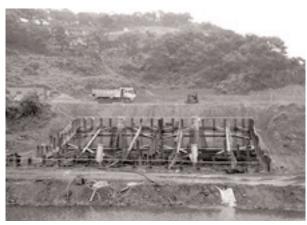
(2) 신기술 범위

광파기와 반사시트타켓을 이용한 철탑 기초 각입 측량 공법 (면 거리 측정, 대각거리, 기울기, 고저차 측정 등)

5. 국내·외 전력시설물에 대한 활용 방안

(1) 활용 분야

품질향상, 원가절감 및 안전관리 등에서 탁월해 송전선로 철탑 기초재 각입 측량 방법으로 널리 활용될 것으로 전망됨


(2) 기술적 피급효과

- 작업의 간편화 및 측량 오차 최소화로 신뢰성 및 품질 확보
- 각입 측량 효율성 증대
- 기초재 각입 측량 오차 최소화
- 정확한 각입공사에 따른 상부 구조물 안정성 및 품질확보

(3) 경제적 파급효과

- 시공 능력 향상으로 공기단축 기여
- 인원 및 장비 투입 감소로 원가절감 기여
- 품질향상에 따른 상부 철탑조립공사 작업 효율성 증대
- 고소작업 감소로 작업원의 안전사고 예방

(2) 현장 시공 사진

광파기와 반사 시트 타켓을 이용한 철탑기초

